Reliable Estimation of Dry Weight in Hemodialysis Patients by the Bioelectrical Impedance Analysis

Khim BJ, Lee DW, Kwon BK, Song AH
Division of Hypertrophy and Hypertension, Department of Internal Medicine, SNU College of Medicine, Korea

Introduction

- Management of fluid in HD patients
 - Largely dependent on a clinical assessment of dry weight (DW)
 - Requires time consuming test and entry process

- Bioelectrical impedance analysis (BIA)
 - 8-point total body electrical impedance method
 - Rapid and non-invasive
 - Easily performed, reliable and fast measurements
 - Directed
 - Provides the fluid status in patients with severe edema during BIA measurements in the supine position
 - May also monitor fluid in renal segments

Phase 1. Development of new prediction method

- UF amount and % changes in ECF/IBW in patients
 - % changes of ECF/IBW = UF amount (kg) x 1.887 x 1.083
 \[\text{Equation (1)} \]
 - % changes of ECF/IBW = UF amount (kg) x 1.887 x 60
 \[\text{Equation (2)} \]

Phase 2. Validation

- Measurement of ECF/IBW by BIA (Biospace Co., Seoul, Korea) before and after HD in newly enrolled HD patients

- Using current DW (cDW) of subjects as reference
- Compared the accuracy of pDW1 (DW predicted using our devised method) and pDW2 (predicted using the nomocromio/hyperolemia slope method) on the plot between ECF and BW.

Subjects

- Induction criteria
 - HD patients maintained for a period of >1 year
 - HD on assessment of hydration status

- Exclusion criteria
 - Diabetes (HbA1c > 6.5) patients on assessment of hydration status, on intensive insulin, or co-morbidities (atherosclerosis, heart failure, cirrhosis, diabetes, etc.)
 - HD patients on dialysis (HbA1c > 6.5) patients
 - > 17 patients
 - HD
 - 6 hypertensive, 3 diabetics, and 2 diabetes (HbA1c > 6.5)

- In HD patients, it was postulated that ingested and metabolically derived water amounts to ECF and that BW increases in a 1:1 relation to fluid intake between two HD sessions

- ECF = BW + 1.08
 - (3B + constant)

- If we know HD patient's post-HD BW and ECF
 - use the point of intersection between HD patient's ECF and normal population's BW

- Example
 - 6 female HD patients and post-HD BW: 58.56 kg, ECF: 11.7 kg
 - 6BW + 1.08 x 56 = +0.8
 - ECF = 56 + 1.08 x 56 = 45.3
 - ECF = 56 + 1.08 x 56 = 45.3 kg
 - BW (pre-HD BW + pDW): 56.2 kg

Assessment of hydration status

- NF
- Clinical assessments of attending physicians + clinical score system + BIA

- Clinical assessment
 - Absence of symptoms and signs of hyper- or hypovolemia
 - No diuresis-hypertension (SBP < 120 mmHg) and renal function
 - No proteinuria (renal and serum creatinine ratios by creatinine, 10 mmol/L), albumin excretion, or sodium output

Result

Table 1. Patient characteristics

Age (years)	59.0
Height (cm)	167.5
Weight (kg)	58.3
BMI	22.8
Diastolic pressure	90.0
Primary renal disease	N/A
Dialysis type	Hemodialysis
No. of patients	6

Correlations between differences and means (A) between pDW1 and cDW and (B) between pDW2 and cDW

Summary & Conclusion

- Based on 8-polar BIA measurements, we developed a new method of predicting DW using the relationship at right lower extremes after HD

- No significant differences were found between cDW, pDW1, and pDW2

- The devised method appears to be as accurate as the nomocromio/hyperolemia slope method.